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The calculation of wave functions of scattered electrons by the multislice method of Cowley and Moodie 
with a finite number of beams is shown to lead to the solution of a finite, closed set of differential equa- 
tions in the limit that the slice thickness approaches zero. The solution is normalized but differs from the 
exact wave function unless sufficient beams are included in the calculation. Hence, normalization is not 
sufficient to ensure that the computed wave function equals the exact wave function. The implications 
of this result for numerical work are discussed. 

Introduction 

The multislice method of Cowley and Moodie has been 
shown by Goodman & Moodie (1974) to give the 
solution of the form of Schr6dinger's equation in 
which backscattering is neglected. If one imposes the 
condition that the electrons are scattered by a periodic 
potential then this equation is equivalent to a count- 
ably infinite set of coupled differential equations de- 
scribing the amplitudes and phases of diffracted beams 
as a function of position in the scatterer. 

Since numerical methods of solving Schr6dinger's 
equation can account for the effects of only a finite 
number of beams it is worth examining the properties 
of approximate solutions obtained by methods in- 
volving a finite number of beams, and to see how the 
accuracy of these solutions might be estimated. While 
it is often not possible to determine analytic solutions 
to problems in which the effects of three or more 
beams are important, certain properties of the solu- 
tions can be obtained. 

One method of determining approximate solutions 

to Schr6dinger's equation is to consider a closed, finite 
subset of the differential equations which are equiva- 
lent to Schr6dinger's equation. It can then be shown 
that the solution of this finite set of equations is 
normalized, a term which is defined later and which 
implies that the number of electrons incident on the 
scatterer equals the number leaving it. This is also a 
property of the exact solution of Schr6dinger's equa- 
tion. To determine whether the solution is an adequate 
approximation to an unknown exact solution it must 
be compared with the solution to a different set of 
differential equations. 

Goodman & Moodie (1974) have suggested that the 
multislice method has an advantage over the method 
of truncating the set of differential equations in that 
it is possible to determine the accuracy of a wave 
function obtained by the multislice method with a 
finite number of beams without having to compare 
the results of calculations with different numbers of 
beams. Since for any non-zero slice thickness it is only 
in the limit that the number of beams becomes in- 
finitely large that a multislice calculation results in 
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a normalized wave function, it is argued that the ac- 
curacy of a wave function can be determined by con- 
sidering how close it is to being normalized. 

In this note it will be shown that the multislice 
method leads to a normalized wave function also in 
the limit that the slice thickness approaches zero. This 
result holds irrespective of the number of beams that 
are considered. The normalized function is just the 
solution to the set of differential equations which re- 
sult when all but those beams used in the multislice 
calculation are equated to zero. The implication of this 
result is that the condition of normalization is not 
sufficient to determine that a wave function obtained 
by the multislice method is accurate, so calculations 
involving different numbers of beams must be com- 
pared. 

We first show that using the multislice method with 
a finite number of beams results in the solution to a 
finite set of differential equations in the limit that the 
slice thickness approaches zero. This can be proved 
by the method used by Goodman & Moodie (1974) 
to show that the multislice method yields the solu- 
tion to Schr~Sdinger's equation. However, in that work 
no restriction was placed on the number of beams. 
The property of normalization is then defined and it 
is shown that the solution of the differential equations 
is normalized. The consequences of this property for 
numerical work are discussed and some examples are 
given. 

Mathematical formulation 

In the following, for notational convenience, we con- 
sider a one-dimensional problem in which the scatter- 
ing potential is given by 

q~(x)= ~ V(h) exp (-2nihx/a).  (1) 
h =  - o o  

The complex amplitude of a diffracted beam at a 
distance z from some reference line is denoted by 
u(h, z) and the excitation error of a particular reflexion 
is written as ((h). The hth Fourier component of 
exp [iaq~(x)Az] is denoted by q(h, Az). The interaction 
constant a is given by 

rc 2 
a -  W2 1 +(1-f lz) l /2  (2) 

where W is the accelerating voltage, 2 the wavelength 
and fl = v/c, v being the velocity of the electron. The 
multislice method enables u(h, z + Az) to be calculated 
given u(h, z) by the following expression 

u(h, z + Az)=exp [2rci~(h)Az] 

x ~ q(h-h',Az)u(h',z).  (3) 
h ' =  - - o 9  

To describe the way in which the multislice method 
is used in numerical calculations when only a finite 
number of beams is considered we introduce an op- 

erator P(h) which has the value unity for those values 
of h which are included in the calculation and which 
is zero otherwise. 

Numerically then one proceeds as follows: assume 
that at some thickness z all but a finite number of 
beams have zero amplitudes. The amplitudes of the 
remaining beams are denoted by w(h, z). For instance, 
at the entrance face of the crystal this condition will 
apply if the incident electron beam is represented by 
a plane wave. Similarly, if the amplitudes of the dif- 
fracted beams are calculated by the method described 
below, there will be only a finite number of non-zero 
beams. We note here that P(h)w(h, z)= w(h, z). 

To calculate an approximation to the amplitude of 
the hth diffracted beam at z+Az,  given that its am- 
plitude at z is w(h, z), one computes the expression 

exp [2ni~(h)Az] ~ q(h-h', Az)w(h', z) (4) 
h ' =  - o ~  

for those values of h to be included in the calculation. 
The amplitudes of beams corresponding to other values 
of h are set equal to zero. The resultant function of 
h is denoted by w(h, z + Az) and equals P(h)w(h, z + Az). 
The above operations may be described by the equa- 
tion 

w(h, z + Az)= P(h) exp [2rci~(h)Az] 

x ~ q(h-h',  Az)w(h', z). (5) 
h ' =  - o o  

For sufficiently small values of Az it is a good ap- 
proximation to write 

w(h, z + Az) = w(h, z) + 2rci((h)Azw(h, z) 
t~t3 

+iaAzP(h) ~ V(h-h')w(h', z) (6) 
h ' = - o o  

so that in the limit that Az ~ 0 one obtains the dif- 
ferential equation 

d w(h, z)=ia ~ P(h)V(h-h')P(h')w(h', z) 
dz h '  = - oo 

+ 2rci((h)w(h, z). (7) 

In deriving (7) the relation P(h)w(h, z) = w(h, z) has been 
used. 

We have shown that the diffracted beams, w(h, z), 
calculated by the multislice method in the limit that 
the slice thickness approaches zero satisfy a closed 
finite set of differential equations. 

It should be noted that no restriction has been placed 
on the index h - h '  in (7). For numerical work it may 
be convenient to restrict h - h '  to those values of the 
indices of beams the intensities of which are not set 
equal to zero. This is equivalent to considering a 
potential function with Fourier coefficients V(h) which 
satisfy P(h)V(h)= V(h). 

We now show that the sum of the intensities of the 
beams described by (7) is independent of z. If a wave 
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function satisfies this property it will be called nor- 
malized. The differential equations (7) may be written 
in the form 

dw =iMw (8) 
dz 

where w is a vector, the components of which are the 
amplitudes of the diffracted beams and M is a matrix 
which is Hermitian as a consequence of the Fourier 
coefficients of a real potential function cp satisfying 
V ( - h )  = V*(h). The sum of the intensities of the beams 
is given by w*w. This quantity can be seen to be inde- 
pendent of z by considering d(w*w)/dz and noting 
that dw*/dz = - iw*M. 

This result shows that in the limit as the slice 
thickness approaches zero one obtains a normalized 
wave function by the multislice method irrespective of 
the number of beams used in the calculation. The 
solution to (7), w(h, z), is not equal to P(h)u(h, z) where 
u(h, z) is the exact value of the amplitude of the hth 
diffracted beam unless P(h)= 1 for all values of h. 
Hence, it is not a sufficient condition to calculate a 
normalized wave function to ensure that the exact 
solution has been obtained. 

Consider now a numerical computation using the 
multislice method with some non-zero value of the 
slice thickness and some finite number of beams. If 
the sum of intensities of the beams at the exit face of 
the crystal is close to the intensity of the incident 
beam then the wave function may be considered as 
being nearly normalized. If a computed wave function 
is not nearly normalized it does not follow that more 
beams are required to obtain an adequate approxima- 
tion to the exact wave function since it may be neces- 
sary only to reduce the slice thickness. 

On the other hand, if a nearly normalized function 
is computed it will still be necessary to compare that 
function with the results of a calculation involving a 
different number of beams to determine that an ade- 
quate number of beams has been considered. 

Examples 
These points are illustrated by some examples. First, 
if only one beam w(0) is included in a calculation, the 
solution w(0, z)=exp [iaV(O)z]w(O, 0) is obtained by 
the multislice method in the limit that the slice thick- 
ness approaches zero. This solution is normalized but, 
for a potential function which is not a constant, it is 
not equal to the exact wave function. 

Consider next the case cp(x)= V cos (2nx), ((h)=0 
and 2 = 0, when the exact values of the amplitudes of 
the diffracted beams are given by 

u(h, z)=(i)hJh(2aVz) (9) 

where Jh is a Bessel function of order h. In the case 
that the multislice method is used with three beams 
we obtain the functions 

w(0,z)=cos (l/2~Vz) 
w(_+ 1,2)=(i/]/2) sin (V2aVz) (10) 

which are the solution to the three differential equa- 
tions that result when only three beams are taken as 
non-zero. This solution is normalized but not equal to 
the solution (9). 

These two examples show that normalization of a 
wave function obtained by the multislice method does 
not imply that it is the exact wave function. As an 
example that it may not be necessary to consider 
more beams if a computed wave function is not close 
to being normalized, consider the case ~o(x)= 
V cos (2nx), ~(1) = 0 and 2 = 0.07 ]k, the wavelength cor- 
responding to an energy of 30 keV. A two-beam multi- 
slice computation when V =  10 V, z= 100A and Az= 
10 ]k results in the sum of the intensities of the two 
beams being only 0.8 of the intensity of the incident 
beam. However, it can be demonstrated by numerical 
calculations that no more beams are required to ob- 
tain a good approximation to the exact values of the 
amplitudes of those beams. 

Finally, it should be mentioned that while the multi- 
slice method may be considered as simply a method 
for integrating a system of differential equations it is, 
as pointed out by Goodman & Moodie (1974), a very 
efficient means for calculating wave functions. 
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